徐宏

浏览:4727  发布人:管理员  发布日期2018-08-13

徐宏

    徐宏,博士,1987年生,2005-2012年在上海交通大学学习并获学士、硕士学位,2015年在日本国立分子科学研究所获博士学位,同年到美国康奈尔大学从事博士后研究工作。20187月起受聘清华大学核能与新能源技术研究院。现为清华大学副教授,博士生导师。主要研究方向为有机多孔材料,有机/无机纳米材料,极紫外光刻材料,锂离子电池,量子化学计算等。目前已在Nature Chemistry, Nature Materials, Nature Communications, JACS, Angewandte Chemie等国际著名期刊上发表60多篇文章,引用5000余次。

徐宏的学术贡献
    共价有机框架(COF)是一类通过共价键链接的多孔结晶性聚合物。材料的结晶性来源于热力学控制的可逆聚合反应,非能量最低构象的热力学不稳定性致使其在合成时就被再次分解。COF的通道阵列和高比表面积在气体分离/储存,非均相催化,离子传输等方面有着广泛的应用前景。然而极差的化学稳定性,严重地限制其实际应用。
    徐宏博士通过亚胺类COF层间堆积能研究,提出亚胺构筑单元中引入给电子侧基提高层间堆积能的策略。在引入甲氧基之后,亚胺COF的结晶性从几乎无规的聚合物提升至高度结晶的水平,所带来的规整结构使材料内部塌陷得以避免,其比表面积接近材料的理论值,达到了二维COF最好水平。同时,材料层间堆积能的提高使得化学稳定性得到了极大的改善,解决了遇质子溶剂(水)不稳定的问题,并可在各类有机溶剂中稳定存在,甚至在苛刻的极端条件:12M盐酸、14M氢氧化钠下,结晶性和比表面积依然不变。该研究成果解决了长期困扰COF领域的结晶性,多孔性,稳定性三者难以兼得的挑战,成果发表于Nature Chemistry (2015, 7, 905)。沿袭这一设计思路,徐宏博士成功研发了多个高综合性能的COF,并实现了首例基于COF的无水质子传导材料(Nature Mater. 2016, 15,722; Nature Chem. 2014, 6, 564),首例基于COF的非均相手性催化剂(Nature Chem. 2015, 7,905; Chem. Commun. 2014, 50, 1292)。以及储能材料(Angew. Chem. Int. Ed. 2015, 54,6814; Chem. Commun. 2017, 53,11334.),光电材料(Science 2017, 357, 673; Nature Commun. 2015, 6,7786; J. Am. Chem. Soc. 2015, 137, 3241),二氧化碳捕捉/转化材料(Chem. Commun. 2017, 53,4242, Nature Commun. 2021, accepted),污水处理材料(J. Am. Chem. Soc. 2017, 139, 2428),储氢材料(J. Am. Chem. Soc. 2021, 143,92-96; Chem. Mater., 33, 9618-9623), 锂离子电池(Energy Stor. Mater. 2020,33, 360-381;Energy Stor. Mater. 2020,33, 188-215;Adv. Energy Mater. 2020,10, 1903568Chem. Commun. 2020,56, 10465–10468;Adv. Mater. 2021,e2106335;Energy Environ. Mater. 2021, accepted;Nature Commun. 2021, accepted)。
 
Selected Publications:
1、Ion-selective covalent organic frameworks boosting electrochemical energy storage and conversion: A Review. Energy Storage Materials55, 498-516, doi:10.1016/j.ensm.2022.12.015 (2023).
2、Cobalt‐Free Cathode Materials: Families and their Prospects (Back Cover of Adv. Energy Mater. 16/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270067 (2022).
3、Cobalt‐Free Cathode Materials: Families and their Prospects. Advanced Energy Materials12, 202103894, doi:10.1002/aenm.202103894 (2022).
4、The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective. Energy & Environmental Science15, 2329 - 2355, doi:10.1039/d2ee01020h (2022).
5、Single‐Crystalline Ni‐Rich LiNixMnyCo1-x−yO2 Cathode Materials: A Perspective (Back Cover of Adv. Energy Mater. 45/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270192 (2022).
6、Single‐Crystalline Ni‐Rich LiNixMnyCo1−x−yO2 Cathode Materials: A Perspective. Advanced Energy Materials12, doi:10.1002/aenm.202202022 (2022).
7、Electrochemical Deposition of a Single-Crystalline Nanorod Polycyclic Aromatic Hydrocarbon Film with Efficient Charge and Exciton Transport. Angewandte Chemie-International Edition61, e202115389, doi:10.1002/anie.202115389 (2022).
8、In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long‐Cycle High‐Voltage Solid‐State Lithium Batteries (Back Cover of Adv. Energy Mater. 39/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270162 (2022).
9、In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long‐Cycle High‐Voltage Solid‐State Lithium Batteries. Advanced Energy Materials12, doi:10.1002/aenm.202201762 (2022).
10、Significance of Antisolvents on Solvation Structures Enhancing Interfacial Chemistry in Localized High-Concentration Electrolytes. Acs Central Science8, 1290-1298, doi:10.1021/acscentsci.2c00791 (2022).
11、Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator (Inside Front Cover of Adv. Energy Mater. 44/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270184 (2022).
12、Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator. Advanced Energy Materials, doi:10.1002/aenm.202201964 (2022).
13、Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Advanced Materials34, e2106335, doi:10.1002/adma.202106335 (2022).
14、Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications13, 172, doi:10.1038/s41467-021-27841-0 (2022).
15、Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst. Nature Communications13, 845, doi:10.1038/s41467-022-28409-2 (2022).
16、Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews5, accepted, doi:10.1007/s41918-022-00158-2 (2022).
17、Targeted Masking Enables Stable Cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6 V. Nano Energy96, doi:10.1016/j.nanoen.2022.107123 (2022).
18、Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).
19、Hydroxide Anion Transport in Covalent Organic Frameworks. J Am Chem Soc143, 8970-8975, doi:10.1021/jacs.1c03268 (2021).
20、Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society143, 92-96, doi:10.1021/jacs.0c11313 (2021).
21、The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).
22、Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials33, 188-215, doi:10.1016/j.ensm.2020.08.014 (2020).
23、Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials10, doi:10.1002/aenm.201903568 (2020).
24、Metal-Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistry of Materials30, 4124-4133, doi:10.1021/acs.chemmater.8b01573 (2018).
25、Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nature Communications9, doi:10.1038/s41467-018-06719-8 (2018).
26、Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science357, 673-676, doi:10.1126/science.aan0202 (2017).
27、Stable Covalent Organic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. Journal of the American Chemical Society139, 2428-2434, doi:10.1021/jacs.6b12328 (2017).
28、Proton conduction in crystalline and porous covalent organic frameworks. Nature Materials15, 722-+, doi:10.1038/nmat4611 (2016).
29、Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nature Chemistry7, 905-912, doi:10.1038/nchem.2352 (2015).
30、Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity. Angewandte Chemie-International Edition54, 11540-11544, doi:10.1002/anie.201504786 (2015).
31、pi-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angewandte Chemie-International Edition54, 13594-13598, doi:10.1002/anie.201506570 (2015).
32、Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nature Communications6, doi:10.1038/ncomms8786 (2015).
33、Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity. Journal of the American Chemical Society137, 3241-3247, doi:10.1021/ja509602c (2015).
34、Covalent organic frameworks Crossing the channel. Nature Chemistry6, 564-566, doi:10.1038/nchem.1984 (2014).
35、Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews42, 8012-8031, doi:10.1039/c3cs60160a (2013).
 
常年招收博士后、联合培养博士生,hongxu@tsinghua.edu.cn
首 页|实验室简介|动态新闻|承担项目|研究成果|产业化案例|仪器设备|团队成员|团队生活|招聘信息|学术活动|联系我们
CopyRight©2012 hexmgroup.com all right reserved 苏ICP备13009392号-1
联系电话:010-62773274 后台管理