何向明

浏览:1242  发布人:管理员  发布日期2022-01-08

Biographies and Photographs of Xiangming He.doc

    清华大学核研院新型能源与材料化学研究室主任,研究员/博士生导师,1982年考入清华大学化学化工系,聚焦锂离子电池及其关键材料研究及工程化近30年。重点围绕锂离子电池的电性能、一致性、安全性及可靠性等关键性能,以材料化学为核心,通过多学科协同的创新,解决关键材料、关键设计、制造技术及关键测试评估技术问题。获发明专利授权500余项。著有《锂离子电池正极材料规模化生产技术》、《聚合物性能与结构》、《电动汽车动力电池系统安全分析与设计》、《锂离子电池模组设计手册》等专著。善于因材施教,共同成长,培养了多名清华大学优秀博士/硕士论文获得者。与多家国际知名大学/实验室长期保持学术合作。在J. Power Sources, Electrochim. Acta, J. Electrochem. Soc., Nat. Commu., Joule, Adv. Mater., Adv. Energy Mater., J. Am. Chem. Soc., Angew. Chem., ACS Energy Lett., Energy & Enviromental Mterials, Energy Stor. Mater.《化学进展》等期刊上发表论文600多篇。
    清华大学核研院锂离子电池实验室(何向明课题组)于上世纪九十年代,开始从事锂离子电池及其关键材料相关的工程科学研究,一直以解决产业技术难点和痛点为目标,通过前沿基础创新研究和工程技术研发的互促式发展,获取高价值核心知识产权,并帮助企业掌控技术方向,协助企业培养人才。目前课题组有近60人,其中博士后20多人;拥有1000多平米实验室,除了依托清华大学国际一流的分析仪器共享平台,课题组还自有多种大型分析设备、计算集群和较为完备的电池实验平台,自购了3台BET(低比表,超高比表和高压吸附)、2台XRD(粉末XRD、透射XRD(软包电池原位测试))、SEM+EDS、大型计算集群、干燥房等。近期的研究重点是兼具高比能量高安全的电池研究,包括机理研究、材料计算与新材料研发、电池仿真与电池设计等。此外,还在MOFs/COFs多孔材料合成与应用,多孔储氢材料,高端光刻胶等领域开展研究。

近期期刊论文

1. Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials,  35, 353-377, doi:10.1016/j.ensm.2020.11.021 (2021).

2. Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, doi:10.1002/inf2.12228 (2021).

3. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials,  36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).

4. Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters,  6, 3719-3724, doi:10.1021/acsenergylett.1c01713 (2021).

5. Trends in study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy,  1, doi:10.1002/bte2.12005 (2021).

6. Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, doi:10.1016/j.matt.2021.08.009 (2021).

7. New insight on graphite anode degradation induced by Li‐plating. Energy & Environmental Materials, doi:10.1002/eem2.12334 (2021).

8. High‐Voltage and High‐Safety Practical Lithium Batteries with Ethylene Carbonate‐Free Electrolyte. Advanced Energy Materials, doi:10.1002/aenm.202102299 (2021).

9. Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials,  37, 77-86, doi:10.1016/j.ensm.2021.02.001 (2021).

10. In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials,  43, 248-257, doi:10.1016/j.ensm.2021.09.007 (2021).

11. Nonflammable Pseudoconcentrated Electrolytes for Batteries. Current Opinion in Electrochemistry,  30, doi:10.1016/j.coelec.2021.100783 (2021).

12. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Advanced Materials, e2106335, doi:10.1002/adma.202106335 (2021).

13. Impact of lithium‐ion coordination on lithium electrodeposition. Energy & Environmental Materials, doi:10.1002/eem2.12266 (2021).

14. Suppressing Electrolyte-Lithium Metal Reactivity via Li+ -Desolvation in Uniform Nano-Porous Separator. Nature Communications, doi:10.1038/s41467-021-27841-0 (2021).

15. Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials,  34, 563-573, doi:10.1016/j.ensm.2020.10.020 (2021).

16. Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters,  6, 1839–1848, doi:10.1021/acsenergylett.1c00365 (2021).

17. In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications,  12, 4235, doi:10.1038/s41467-021-24404-1 (2021).

18. Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society,  143, 92-96, doi:10.1021/jacs.0c11313 (2021).

19. Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, doi:10.1021/acs.chemmater.1c03156 (2021).

20. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy,  85, doi:10.1016/j.nanoen.2021.105878 (2021).

21. Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials,  40, 329-336, doi:10.1016/j.ensm.2021.05.018 (2021).

22. Thermal runaway of lithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy & Environmental Materials, doi:10.1002/eem2.12297 (2021).

23. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials,  39, 395-402, doi:10.1016/j.ensm.2021.04.035 (2021).

24. The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials,  33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).

25. An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters,  5, 807-816, doi:10.1021/acsenergylett.0c00211 (2020).

26. Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials,  33, 188-215, doi:10.1016/j.ensm.2020.08.014 (2020).

27. Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials,  10, doi:10.1002/aenm.201903568 (2020).

28. Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy,  71, doi:10.1016/j.nanoen.2020.104643 (2020).

29. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications,  11, 5100, doi:10.1038/s41467-020-18868-w (2020).

30. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule,  4, 743-770, doi:10.1016/j.joule.2020.02.010 (2020).

31. An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials,  29, doi:10.1002/adfm.201805978 (2019).

32. New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters,  4, 656-665, doi:10.1021/acsenergylett.9b00032 (2019).

33. Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule,  3, 1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).

34. An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials,  29, doi:10.1002/adfm.201805978 (2018).

35. Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule,  2, 2047-2064, doi:10.1016/j.joule.2018.06.015 (2018).

 

首 页|实验室简介|动态新闻|承担项目|研究成果|产业化案例|仪器设备|团队成员|团队生活|招聘信息|学术活动|联系我们
CopyRight©2012 hexmgroup.com all right reserved 苏ICP备13009392号-1
联系电话:010-62773274 后台管理