何向明

浏览:2150  发布人:管理员  发布日期2022-01-08

Biographies and Photographs of Xiangming He.doc

    清华大学核研院新型能源与材料化学研究室主任,研究员/博士生导师,1982年考入清华大学化学化工系,聚焦锂离子电池及其关键材料研究及工程化近30年。重点围绕锂离子电池的电性能、一致性、安全性及可靠性等关键性能,以材料化学为核心,通过多学科协同的创新,解决关键材料、关键设计、制造技术及关键测试评估技术问题。获发明专利授权500余项。著有《锂离子电池正极材料规模化生产技术》、《聚合物性能与结构》、《电动汽车动力电池系统安全分析与设计》、《锂离子电池模组设计手册》等专著。善于因材施教,共同成长,培养了多名清华大学优秀博士/硕士论文获得者。与多家国际知名大学/实验室长期保持学术合作。在J. Power Sources, Electrochim. Acta, J. Electrochem. Soc., Nat. Commu., Joule, Adv. Mater., Adv. Energy Mater., J. Am. Chem. Soc., Angew. Chem., ACS Energy Lett., Energy & Enviromental Mterials, Energy Stor. Mater.《化学进展》等期刊上发表论文600多篇。
    清华大学核研院锂离子电池实验室(何向明课题组)于上世纪九十年代,开始从事锂离子电池及其关键材料相关的工程科学研究,一直以解决产业技术难点和痛点为目标,通过前沿基础创新研究和工程技术研发的互促式发展,获取高价值核心知识产权,并帮助企业掌控技术方向,协助企业培养人才。目前课题组有近60人,其中博士后20多人;拥有1000多平米实验室,除了依托清华大学国际一流的分析仪器共享平台,课题组还自有多种大型分析设备、计算集群和较为完备的电池实验平台,自购了3台BET(低比表,超高比表和高压吸附)、2台XRD(粉末XRD、透射XRD(软包电池原位测试))、SEM+EDS、大型计算集群、干燥房等。近期的研究重点是兼具高比能量高安全的电池研究,包括机理研究、材料计算与新材料研发、电池仿真与电池设计等。此外,还在MOFs/COFs多孔材料合成与应用,多孔储氢材料,高端光刻胶等领域开展研究。

部分期刊论文

2022年1-43
2021年44-74
2020年75-93
2019年94-107
2018年及以前108-211
 
 
1            The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective. Energy & Environmental Science15, 2329 - 2355, doi:10.1039/d2ee01020h (2022).
2            Engineering an Insoluble Cathode Electrolyte Interphase Enabling High Performance NCM811//Graphite Pouch Cell at 60 °C. Advanced Energy Materials12, doi:10.1002/aenm.202201631 (2022).
3            Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator. Advanced Energy Materials, doi:10.1002/aenm.202201964 (2022).
4            In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long‐Cycle High‐Voltage Solid‐State Lithium Batteries. Advanced Energy Materials12, doi:10.1002/aenm.202201762 (2022).
5            Single‐Crystalline Ni‐Rich LiNixMnyCo1−x−yO2 Cathode Materials: A Perspective. Advanced Energy Materials, doi:10.1002/aenm.202202022 (2022).
6            Digital Twin Enables Rational Design of Ultrahigh‐Power Lithium‐Ion Batteries. Advanced Energy Materials, doi:10.1002/aenm.202202660 (2022).
7            Cobalt‐Free Cathode Materials: Families and their Prospects. Advanced Energy Materials12, 202103894, doi:10.1002/aenm.202103894 (2022).
8            Lithium Difluorophosphate as a Widely Applicable Additive to Boost Lithium Ion Batteries: a Perspective. Advanced Functional Materials, doi:10.1002/adfm.202211958 (2022).
9            Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Advanced Materials34, e2106335, doi:10.1002/adma.202106335 (2022).
10          Thermal Runaway of Nonflammable Localized High‐Concentration Electrolytes for Practical LiNi0.8Mn0.1Co0.1O2|Graphite‐SiO Pouch Cells. Advanced Science, e2204059, doi:10.1002/advs.202204059 (2022).
11          Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews5, accepted, doi:10.1007/s41918-022-00158-2 (2022).
12          Engineering manganese-rich phospho-olivine cathode materials with exposed crystal {0 1 0} facets for practical Li-ion batteries. Chemical Engineering Journal454, doi:10.1016/j.cej.2022.139986 (2023).
13          Reversible Lithium Plating in the Pores of a Graphite Electrode Delivers Additional Capacity for Existing Lithium-ion Batteries Enabled by a Compatible Electrolyte. Chemical Engineering Journal454, doi:10.1016/j.cej.2022.140290 (2023).
14          Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat4, e12228, doi:10.1002/inf2.12228 (2022).
15          High ion‐selectivity of garnet solid electrolyte enabling separation of metallic lithium. Energy & Environmental Materials, doi:10.1002/eem2.12425 (2022).
16          Revelation of the transition‐metal doping mechanism in lithium manganese phosphate for high performance of lithium‐ion batteries. Battery Energy1, doi:10.1002/bte2.20220020 (2022).
17          Unraveling the doping mechanisms in lithium iron phosphate. Energy Materials2, doi:10.20517/energymater.2022.12 (2022).
18          New Insight on Graphite Anode Degradation Induced by Li‐Plating. Energy & Environmental Materials5, 872-876, doi:10.1002/eem2.12334 (2022).
19          Significance of Antisolvents on Solvation Structures Enhancing Interfacial Chemistry in Localized High-Concentration Electrolytes. Acs Central Science8, 1290-1298, doi:10.1021/acscentsci.2c00791 (2022).
20          Insight into the electrochemical behaviors of NCM811|SiO-Gr pouch battery through thickness variation. Energy & Environmental Materials, doi:10.1002/eem2.12401 (2022).
21          Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Materials49, 135-143, doi:10.1016/j.ensm.2022.04.009 (2022).
22          First AIE probe for lithium-metal anodes. Matter5, 3530-3540, doi:10.1016/j.matt.2022.07.018 (2022).
23          Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience2, 125-137, doi:10.1016/j.esci.2022.03.006 (2022).
24          A High-Performance Intermediate-Temperature Aluminum-Ion Battery Based on Molten Salt Electrolyte. Energy Storage Materials48, 356-365, doi:10.1016/j.ensm.2022.03.030 (2022).
25          The significance of imperceptible current flowing through the lithium reference electrode in lithium ion batteries. Journal of Power Sources546, 231953, doi:10.1016/j.jpowsour.2022.231953 (2022).
26          Impact of Lithium‐Ion Coordination on Lithium Electrodeposition. Energy & Environmental Materials, doi:10.1002/eem2.12266 (2022).
27          In-situ polymerized separator enables propylene carbonate electrolyte compatible with high-performance lithium batteries. Journal of Power Sources551, doi:10.1016/j.jpowsour.2022.232172 (2022).
28          Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications13, 172, doi:10.1038/s41467-021-27841-0 (2022).
29          Nonflammable All-Fluorinated Electrolytes Enabling High-Power and Long-Life LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium-Ion Batteries. Nano Energy, doi:10.1016/j.nanoen.2022.108040 (2022).
30          Polymer Brushes: Synthesis, Characterization, Properties and Applications. Progress in Materials Science130, doi:10.1016/j.pmatsci.2022.101000 (2022).
31          Prelithiation enhances cycling life of lithium‐ion batteries: a mini review. Energy & Environmental Materials, accepted, doi:10.1002/eem2.12501 (2022).
32          Rational design of imine‐linked three‐dimensional mesoporous covalent organic frameworks with bor topology. SusMat2, 197-205, doi:10.1002/sus2.54 (2022).
33          Thermal-Switchable, Trifunctional Ceramic-Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems. ACS Nano16, 10729-10741, doi:10.1021/acsnano.2c02557 (2022).
34          Revisiting the Initial Irreversible Capacity Loss of LiNi0.6Co0.2Mn0.2O2 Cathode Material Batteries. Energy Storage Materials50, 373-379, doi:10.1016/j.ensm.2022.05.038 (2022).
35          Ultrahigh rate capability of manganese based olivine cathodes enabled by interfacial electron transport enhancement. Nano Energy104, doi:10.1016/j.nanoen.2022.107895 (2022).
36          Targeted Masking Enables Stable Cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6 V. Nano Energy96, doi:10.1016/j.nanoen.2022.107123 (2022).
37          Thermal runaway of lithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy & Environmental Materials, doi:10.1002/eem2.12297 (2022).
38          Regulation of Dendrite-free Li Plating via Lithiophilic Sites on Lithium-alloy Surface. Acs Applied Materials & Interfaces, doi:10.1021/acsami.2c05801 (2022).
39          Atomic-Scale Insight into the Lattice Volume Plunge of LixCoO2 at Deep Delithiation. Energy Advances, doi:10.1039/d2ya00278g (2022).
40          Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries. Nano Energy104, doi:10.1016/j.nanoen.2022.107874 (2022).
41          Double-salt electrolyte for Li-ion batteries operated at elevated temperatures. Energy Storage Materials49, 493-501, doi:10.1016/j.ensm.2022.04.036 (2022).
42          Thermal runaway modeling of LiNi0.6Mn0.2Co0.2O2/graphite batteries under different states of charge. Journal of Energy Storage49, doi:10.1016/j.est.2022.104090 (2022).
43          Challenges of Polymer Electrolyte with Wide Electrochemical Window for High Energy Solid State Lithium Batteries. InfoMat, doi:10.1002/INF2.12394 (2022).
44          Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials35, 353-377, doi:10.1016/j.ensm.2020.11.021 (2021).
45         Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).
46          Benzophenone as indicator detecting lithium metal inside solid state electrolyte. Journal of Power Sources492, 229661, doi:10.1016/j.jpowsour.2021.229661 (2021).
47          Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters6, 3719-3724, doi:10.1021/acsenergylett.1c01713 (2021).
48          Trends in study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy1, doi:10.1002/bte2.12005 (2021).
49          Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter4, 3354-3365, doi:10.1016/j.matt.2021.08.009 (2021).
50          High‐Voltage and High‐Safety Practical Lithium Batteries with Ethylene Carbonate‐Free Electrolyte. Advanced Energy Materials11, 2102299, doi:10.1002/aenm.202102299 (2021).
51          Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials37, 77-86, doi:10.1016/j.ensm.2021.02.001 (2021).
52          In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials43, 248-257, doi:10.1016/j.ensm.2021.09.007 (2021).
53          Nonflammable Pseudoconcentrated Electrolytes for Batteries. Current Opinion in Electrochemistry30, doi:10.1016/j.coelec.2021.100783 (2021).
54          Correlation between thermal stabilities of nickel‐rich cathode materials and battery thermal runaway. International Journal of Energy Research45, 20867-20877, doi:10.1002/er.7143 (2021).
55          From separator to membrane: separators can function more in lithium ion batteries. Electrochemistry Communications124, doi:10.1016/j.elecom.2021.106948 (2021).
56          Suppression of lithium dendrite by aramid nanofibrous aerogel separator. Journal of Power Sources515, doi:10.1016/j.jpowsour.2021.230608 (2021).
57          A practical approach to predict volume deformation of lithium ion batteries from crystal structure changes of electrode materials. International Journal of Energy Research, doi:10.1002/ER.6355 (2021).
58          Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials34, 563-573, doi:10.1016/j.ensm.2020.10.020 (2021).
59          Anodic Stabilities of Various Metals as the Current Collector in High Concentration Electrolytes for Lithium Batteries. Journal of the Electrochemical Society168, doi:10.1149/1945-7111/abe8ba (2021).
60          Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters6, 1839–1848, doi:10.1021/acsenergylett.1c00365 (2021).
61          In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications12, 4235, doi:10.1038/s41467-021-24404-1 (2021).
62          Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries. Journal of Energy Chemistry61, 269-280, doi:10.1016/j.jechem.2021.03.025 (2021).
63          Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society143, 92-96, doi:10.1021/jacs.0c11313 (2021).
64          Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials33, 9618-9623, doi:10.1021/acs.chemmater.1c03156 (2021).
65          Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy85, doi:10.1016/j.nanoen.2021.105878 (2021).
66          Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials40, 329-336, doi:10.1016/j.ensm.2021.05.018 (2021).
67          Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries. Journal of Energy Chemistry62, 538-545, doi:10.1016/j.jechem.2021.04.026 (2021).
68          Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials39, 395-402, doi:10.1016/j.ensm.2021.04.035 (2021).
69          PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence8, 2, doi:10.1186/s40580-020-00252-5 (2021).
70          Unexpected electocatalytic activity of a micron-sized carbon sphere-graphene (MS-GR) supported palladium composite catalyst for ethanol oxidation reaction (EOR). Materials Chemistry and Physics259, doi:ARTN 124035
10.1016/j.matchemphys.2020.124035 (2021).
71          Pry into the thermal and mechanical properties of electrolyte-soaked separators. Journal of the Taiwan Institute of Chemical Engineers119, 269-276, doi:10.1016/j.jtice.2021.01.031 (2021).
72          A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. Journal of Energy Chemistry59, 83-99, doi:10.1016/j.jechem.2020.10.017 (2021).
73          In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Science China Chemistry64, 1417-1425, doi:10.1007/s11426-021-1023-4 (2021).
74          Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model. Applied Energy295, doi:10.1016/j.apenergy.2021.117038 (2021).
75          The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).
76          High-temperature Aging Behavior of Commercial Li-Ion Batteries. International Journal of Electrochemical Science15, 4586-4591, doi:10.20964/2020.05.71 (2020).
77          A Facile Approach to High Precision Detection of Cell-to-Cell Variation for Li-ion Batteries. Scientific Reports10, 7182, doi:10.1038/s41598-020-64174-2 (2020).
78          An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters5, 807-816, doi:10.1021/acsenergylett.0c00211 (2020).
79          Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials33, 188-215, doi:10.1016/j.ensm.2020.08.014 (2020).
80         Thickness variation of lithium metal anode with cycling. Journal of Power Sources476, doi:10.1016/j.jpowsour.2020.228749 (2020).
81          Accelerated Lithium-ion Conduction in Covalent Organic Frameworks. Chemical Communications56, 10465 - 10468, doi:10.1039/D0CC04324A (2020).
82          Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials10, doi:10.1002/aenm.201903568 (2020).
83          Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research13, 1122-1126, doi:10.1007/s12274-020-2756-2 (2020).
84          Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Appl Mater Interfaces12, 57055-57063, doi:10.1021/acsami.0c16865 (2020).
85          Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Applied Energy259, 13, doi:10.1016/j.apenergy.2019.114143 (2020).
86          Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy71, doi:10.1016/j.nanoen.2020.104643 (2020).
87          Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. SCIENCE CHINA Materials63, 1683-1692, doi:10.1007/s40843-020-1327-8 (2020).
88          Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications11, 5100, doi:10.1038/s41467-020-18868-w (2020).
89          A polymeric composite protective layer for stable Li metal anodes. Nano Convergence7, 21, doi:10.1186/s40580-020-00231-w (2020).
90          PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Applied Energy Materials3, 7191-7199, doi:10.1021/acsaem.0c01232 (2020).
91          Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule4, 743-770, doi:10.1016/j.joule.2020.02.010 (2020).
92          A reliable approach of differentiating discrete sampled-data for battery diagnosis. eTransportation3, doi:10.1016/j.etran.2020.100051 (2020).
93          Honeycomb-shaped carbon particles prepared from bicycle waste tires for anodes in lithium ion batteries. Materials Chemistry and Physics251, doi:10.1016/j.matchemphys.2020.123202 (2020).
94          An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials29, doi:10.1002/adfm.201805978 (2019).
95          New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters4, 656-665, doi:10.1021/acsenergylett.9b00032 (2019).
96          Anion effects on the solvation structure and properties of imide lithium salt-based electrolytes. Rsc Advances9, 41837-41846, doi:10.1039/c9ra07824j (2019).
97          Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. Journal of Power Sources430, 60-66, doi:10.1016/j.jpowsour.2019.04.086 (2019).
98          Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule3, 1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).
99          A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation2, doi:10.1016/j.etran.2019.100034 (2019).
100        Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Applied Energy250, 323-332, doi:10.1016/j.apenergy.2019.05.015 (2019).
101        Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries. Corrosion Science158, 108100, doi:10.1016/j.corsci.2019.108100 (2019).
102        Conformal Hollow Carbon Sphere Coated on Sn4P3 Microspheres as High-Rate and Cycle-Stable Anode Materials with Superior Sodium Storage Capability. ACS Applied Energy Materials2, 1756-1764, doi:10.1021/acsaem.8b01885 (2019).
103        Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries. Electrochimica Acta310, 230-239, doi:10.1016/j.electacta.2019.04.124 (2019).
104        Influence of aging paths on the thermal runaway features of lithium-ion batteries in accelerating rate calorimetry tests. International Journal of Electrochemical Science14, 44-58, doi:10.20964/2019.01.14 (2019).
105        Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Applied Energy246, 53-64, doi:10.1016/j.apenergy.2019.04.009 (2019).
106        A graphical model for evaluating the status of series-connected lithium-ion battery pack. International Journal of Energy Research43, 749-766, doi:10.1002/er.4305 (2019).
107        Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine. Ieee Transactions on Vehicular Technology68, 8583-8592, doi:10.1109/tvt.2019.2927120 (2019).
108        Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. Journal of Power Sources378, 527-536, doi:10.1016/j.jpowsour.2017.12.050 (2018).
109        Internal short circuit detection method for battery pack based on circuit topology. Science China Technological Sciences61, 1502-1511, doi:10.1007/s11431-017-9299-3 (2018).
110        Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content. Electrochimica Acta265, 115-120, doi:10.1016/j.electacta.2018.01.181 (2018).
111        An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials29, doi:10.1002/adfm.201805978 (2018).
112        Leaf-like alpha-Fe2O3 micron-particle: Preparation and its usage as anode materials for lithium ion batteries. Materials Chemistry and Physics207, 58-66, doi:10.1016/j.matchemphys.2017.12.046 (2018).
113        Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components. Applied Energy228, 633-644, doi:10.1016/j.apenergy.2018.06.126 (2018).
114        Pseudoconcentrated Electrolyte with High Ionic Conductivity and Stability Enables High-Voltage Lithium-Ion Battery Chemistry. ACS Applied Energy Materials1, 5446-5452, doi:10.1021/acsaem.8b01020 (2018).
115        Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule2, 2047-2064, doi:10.1016/j.joule.2018.06.015 (2018).
116        Preparation of mesoporous Ni2P nanobelts with high performance for electrocatalytic hydrogen evolution and supercapacitor. International Journal of Hydrogen Energy43, 3697-3704, doi:10.1016/j.ijhydene.2018.01.008 (2018).
117        Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy7, 18-26, doi:10.1016/j.mtener.2017.12.001 (2018).
118        Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. Journal of Energy Storage18, 26-39, doi:10.1016/j.est.2018.04.020 (2018).
119        Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode. Frontiers in Energy Research6, doi:10.3389/fenrg.2018.00126 (2018).
120        Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity. Journal of Cleaner Production205, 447-462, doi:10.1016/j.jclepro.2018.09.003 (2018).
121        Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials10, 246-267, doi:10.1016/j.ensm.2017.05.013 (2018).
122        A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries. Journal of the Electrochemical Society165, A3748-A3765, doi:10.1149/2.0311816jes (2018).
123        Analysis on the Fault Features for Internal Short Circuit Detection Using an Electrochemical-Thermal Coupled Model. Journal of the Electrochemical Society165, A155-A167, doi:10.1149/2.0501802jes (2018).
124        Fusing Phenomenon of Lithium-Ion Battery Internal Short Circuit. Journal of the Electrochemical Society164, A2738-A2745, doi:10.1149/2.1721712jes (2017).
125        Internal Short Circuit Trigger Method for Lithium-Ion Battery Based on Shape Memory Alloy. Journal of the Electrochemical Society164, A3038-A3044, doi:10.1149/2.0731713jes (2017).
126        An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. Journal of Power Sources364, 328-340, doi:10.1016/j.jpowsour.2017.08.035 (2017).
127        Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries. Journal of Physical Chemistry Letters8, 1072-1077, doi:10.1021/acs.jpclett.6b02933 (2017).
128        Application of Galvanostatic Intermittent Titration Technique to Investigate Phase Transformation of LiFePO4 Nanoparticles. Electrochimica Acta241, 132-140, doi:10.1016/j.electacta.2017.04.137 (2017).
129        Polyimide Binder: A Facile Way to Improve Safety of Lithium Ion Batteries. Electrochimica Acta187, 113-118, doi:10.1016/j.electacta.2015.11.019 (2016).
130        A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery. Applied Energy165, 48-59, doi:10.1016/j.apenergy.2015.12.063 (2016).
131        Boron-doped Ketjenblack based high performances cathode for rechargeable Li-O-2 batteries. Journal of Energy Chemistry25, 131-135, doi:10.1016/j.jechem.2015.08.011 (2016).
132        Effect of Pore Size Distribution of Carbon Matrix on the Performance of Phosphorus@Carbon Material as Anode for Lithium-Ion Batteries. Acs Sustainable Chemistry & Engineering4, 4217-4223, doi:10.1021/acssuschemeng.6b00712 (2016).
133        Characterization of porous micro-/nanostructured Co3O4 microellipsoids. Electrochimica Acta188, 40-47, doi:10.1016/j.electacta.2015.10.187 (2016).
134        A novel material Li2NiFe2O4: Preparation and performance as anode of lithium ion battery. Materials Chemistry and Physics177, 31-39, doi:10.1016/j.matchemphys.2016.03.030 (2016).
135        Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase. Journal of Energy Chemistry24, 138-144, doi:10.1016/s2095-4956(15)60294-7 (2015).
136        Nanocomposite polymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: high thermal endurance and cycle stability in lithium ion battery applications. Journal of Materials Chemistry A3, 17697-17703, doi:10.1039/c5ta02781k (2015).
137        In-situ Coating of Cathode by Electrolyte Additive for High-voltage Performance of Lithium-ion Batteries. Electrochimica Acta158, 202-208, doi:10.1016/j.electacta.2014.12.143 (2015).
138        Internal short circuit detection for battery pack using equivalent parameter and consistency method. Journal of Power Sources294, 272-283, doi:10.1016/j.jpowsour.2015.06.087 (2015).
139        Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries. Electrochimica Acta151, 109-117, doi:10.1016/j.electacta.2014.10.154 (2015).
140        Strategy for synthesizing spherical LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. Materials Chemistry and Physics152, 177-182, doi:10.1016/j.matchemphys.2014.12.030 (2015).
141        Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. Journal of Power Sources275, 261-273, doi:10.1016/j.jpowsour.2014.11.017 (2015).
142        Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery. Applied Energy154, 74-91, doi:10.1016/j.apenergy.2015.04.118 (2015).
143        Significant role of "burned" graphene in determining the morphology of LiNiO2 prepared under the air conditions. Electrochimica Acta176, 240-248, doi:10.1016/j.electacta.2015.07.035 (2015).
144        Composite of graphite/phosphorus as anode for lithium-ion batteries. Journal of Power Sources289, 100-104, doi:10.1016/j.jpowsour.2015.04.168 (2015).
145        Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties. Journal of Power Sources253, 143-149, doi:10.1016/j.jpowsour.2013.12.010 (2014).
146        Improvement in High-voltage Performance of Lithium-ion Batteries Using Bismaleimide as an Electrolyte Additive. Electrochimica Acta121, 264-269, doi:10.1016/j.electacta.2013.12.170 (2014).
147        Effect of silica nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) coated layers on the performance of polypropylene separator for lithium-ion batteries. Journal of Energy Chemistry23, 582-586, doi:10.1016/s2095-4956(14)60188-1 (2014).
148        Characterization of large format lithium ion battery exposed to extremely high temperature. Journal of Power Sources272, 457-467, doi:10.1016/j.jpowsour.2014.08.094 (2014).
149        Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. Journal of Power Sources255, 294-301, doi:10.1016/j.jpowsour.2014.01.005 (2014).
150        Molecular dynamics simulations of La2O3 thin films on SiO2. Journal of Energy Chemistry23, 282-286, doi:10.1016/s2095-4956(14)60148-0 (2014).
151        Influence of anion species on the morphology of solvothermal synthesized LiMn0.9Fe0.1PO4. Electrochimica Acta134, 13-17, doi:10.1016/j.electacta.2014.04.081 (2014).
152        Morphology Regulation of Nano LiMn0.9Fe0.1PO4 by Solvothermal Synthesis for lithium ion batteries (vol 112, pg 144, 2013). Electrochimica Acta115, 671-671, doi:10.1016/j.electacta.2013.12.002 (2014).
153        Electrochemical properties of MnO2 nanorods as anode materials for lithium ion batteries. Electrochimica Acta142, 152-156, doi:10.1016/j.electacta.2014.07.089 (2014).
154        Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries. Journal of Power Sources246, 499-504, doi:10.1016/j.jpowsour.2013.07.107 (2014).
155        Nano particle LiFePO4 prepared by solvothermal process. Journal of Power Sources244, 94-100, doi:10.1016/j.jpowsour.2013.03.101 (2013).
156        Graphene-coated plastic film as current collector for lithium/sulfur batteries. Journal of Power Sources239, 623-627, doi:10.1016/j.jpowsour.2013.02.008 (2013).
157        Synthesis and characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O-2 cathode material for Li-ion batteries. Journal of Power Sources244, 652-657, doi:10.1016/j.jpowsour.2012.12.107 (2013).
158        Using probability density function to evaluate the state of health of lithium-ion batteries. Journal of Power Sources232, 209-218, doi:10.1016/j.jpowsour.2013.01.018 (2013).
159        Morphology regulation of nano LiMn0.9Fe0.1PO4 by solvothermal synthesis for lithium ion batteries. Electrochimica Acta112, 144-148, doi:10.1016/j.electacta.2013.08.166 (2013).
160        Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochimica Acta111, 674-679, doi:10.1016/j.electacta.2013.08.048 (2013).
161        In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A1, 5955-5961, doi:10.1039/c3ta00086a (2013).
162        Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochimica Acta114, 527-532, doi:10.1016/j.electacta.2013.10.052 (2013).
163        Electro-thermal modeling and experimental validation for lithium ion battery. Journal of Power Sources199, 227-238, doi:10.1016/j.jpowsour.2011.10.027 (2012).
164        LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Research5, 395-401, doi:10.1007/s12274-012-0220-7 (2012).
165        The effect of local current density on electrode design for lithium-ion batteries. Journal of Power Sources207, 127-133, doi:10.1016/j.jpowsour.2011.12.063 (2012).
166        In Situ Polymerization of Methoxy Polyethylene Glycol (350) Monoacrylate and Polyethyleneglycol (200) Dimethacrylate Based Solid-State Polymer Electrolyte for Li-Ion Batteries. Journal of the Electrochemical Society159, A915-A919, doi:10.1149/2.003207jes (2012).
167        Macromolecule plasticized interpenetrating structure solid state polymer electrolyte for lithium ion batteries. Electrochimica Acta68, 214-219, doi:10.1016/j.electacta.2012.02.067 (2012).
168        Crystal Orientation Tuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials. Nano Letters12, 5632-5636, doi:10.1021/nl3027839 (2012).
169        Nano-Structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries. Angewandte Chemie-International Edition51, 9034-9037, doi:10.1002/anie.201204591 (2012).
170        Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries. Journal of Materials Chemistry22, 22077-22081, doi:10.1039/c2jm30632h (2012).
171        Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries. Electrochimica Acta72, 114-119, doi:10.1016/j.electacta.2012.04.005 (2012).
172        Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors. Journal of Power Sources202, 284-290, doi:10.1016/j.jpowsour.2011.10.143 (2012).
173        (!!! INVALID CITATION !!! {Wang, 2011 #72;Chen, 2011 #37;Wang, 2010 #13;Li, 2009 #23;Li, 2009 #11;He, 2009 #6;Zhao, 2008 #74;Zhao, 2008 #83;Zhao, 2008 #78;Zhao, 2008 #95;He, 2008 #129;He, 2008 #150;Guo, 2008 #64}).
174        Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC. International Journal of Hydrogen Energy32, 380-384, doi:10.1016/j.ijhydene.2006.06.057 (2007).
175        Reclaim/recycle of Pt/C catalysts for PEMFC. Energy Conversion and Management48, 450-453, doi:10.1016/j.enconman.2006.06.020 (2007).
176        Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries. Electrochimica Acta52, 6006-6011, doi:10.1016/j.electacta.2007.03.050 (2007).
177        Advanced structures in electrodepo sited tin base anodes for lithium ion batteries. Electrochimica Acta52, 7820-7826, doi:10.1016/j.electacta.2007.06.017 (2007).
178        Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries. Solid State Ionics178, 115-118, doi:10.1016/j.ssi.2006.10.029 (2007).
179        Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochimica Acta52, 3199-3206, doi:10.1016/j.electacta.2006.09.068 (2007).
180        Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochimica Acta52, 4312-4316, doi:10.1016/j.el, ectacta.2006.12.012 (2007).
181        Nanometer copper-tin alloy anode material for lithium-ion batteries. Electrochimica Acta52, 2447-2452, doi:10.1016/j.electacta.2006.08.055 (2007).
182        Synthesis of spherical nano tin encapsulated pyrolytic polyacrylonitrile composite anode material for Li-ion batteries. Solid State Ionics178, 833-836, doi:10.1016/j.ssi.2007.02.013 (2007).
183        Synthesis of nano Sb-encapsulated pyrolytic polyacrylonitrile composite for anode material in lithium secondary batteries. Electrochimica Acta52, 3651-3653, doi:10.1016/j.electacta.2006.10.029 (2007).
184        Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries. Electrochimica Acta52, 7372-7376, doi:10.1016/j.electacta.2007.06.016 (2007).
185        Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries. Journal of Power Sources158, 543-549, doi:10.1016/j.jpowsour.2005.08.045 (2006).
186        Preparation of Cu6Sn5-encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of oxides. Journal of the Electrochemical Society153, A1859-A1862, doi:10.1149/1.2229276 (2006).
187        Preparation of Sn(2)Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides. Electrochimica Acta52, 1221-1225, doi:10.1016/j.electacta.2006.07.020 (2006).
188        Preparation of Sn/C microsphere composite anode for lithium-ion batteries via carbothermal reduction. Electrochemical and Solid State Letters9, A320-A323, doi:10.1149/1.2197147 (2006).
189        Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochimica Acta52, 688-693, doi:10.1016/j.electacta.2006.05.055 (2006).
190        Hard carbon/Li2.6Co0.4N composite anode materials for Li-ion batteries. Solid State Ionics177, 1331-1334, doi:10.1016/j.ssi.2006.06.029 (2006).
191        Chemical reduction of nano-scale Cu2Sb powders as anode materials for Li-ion batteries. Electrochimica Acta52, 1538-1541, doi:10.1016/j.electacta.2006.01.084 (2006).
192        Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion. Journal of Membrane Science280, 6-9, doi:10.1016/j.memsci.2006.05.028 (2006).
193        Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion. Journal of Membrane Science272, 11-14, doi:10.1016/j.memsci.2005.12.038 (2006).
194        Oxygen evolution improvement of Ni(OH)(2) by Ca-3(PO4)(2) coating at elevated temperature. Journal of Electroanalytical Chemistry597, 127-129, doi:10.1016/j.jelechem.2006.09.015 (2006).
195        Stannum doping of layered LiNi3/8Co2/8Mn3/8O2 cathode materials with high rate capability for Li-ion batteries. Journal of Power Sources158, 524-528, doi:10.1016/j.jpowsour.2005.08.026 (2006).
196        Ytterbium coating of spherical Ni(OH)(2) cathode materials for Ni-MH batteries at elevated temperature. Journal of Power Sources158, 1480-1483, doi:10.1016/j.jpowsour.2005.10.063 (2006).
197        Manufacture of anti-bogus label by track-etching technique. Radiation Measurements41, 120-122, doi:10.1016/j.radmeas.2005.03.001 (2006).
198        Track polypropylene membrane based on irradiation with fragments from fission of uranium. Radiation Measurements41, 112-113, doi:10.1016/j.radmeas.2005.04.003 (2006).
199        Ca(3)(PO(4))(2) coating of spherical Ni(OH)(2) cathode materials for Ni-MH batteries at elevated temperature. Electrochimica Acta51, 4533-4536, doi:10.1016/j.electacta.2006.01.009 (2006).
200        Conductance calculation of LiPF6 in organic solutions based on mean spherical approximation theory. Chemical Physics324, 767-770, doi:10.1016/j.chemphys.2005.11.003 (2006).
201        Granulation of nano-scale Ni(OH)(2) cathode materials for high power Ni-MH batteries. Energy Conversion and Management47, 1879-1883, doi:10.1016/j.enconman.2005.10.004 (2006).
202        Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries. Materials Chemistry and Physics95, 105-108, doi:10.1016/j.matchemphys.2005.06.006 (2006).
203        Co/Yb hydroxide coating of spherical Ni(OH)(2) cathode materials for Ni-MH batteries at elevated temperatures. Journal of the Electrochemical Society153, A566-A569, doi:10.1149/1.2161581 (2006).
204        Electrodeposition of Sn-Cu alloy anodes for lithium batteries. Electrochimica Acta50, 4140-4145, doi:10.1016/j.electacta.2005.01.041 (2005).
205        Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory. Journal of Chemical Physics123, 3, doi:10.1063/1.2149849 (2005).
206        In situ composite of nano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochimica Acta51, 1069-1075, doi:10.1016/j.electacta.2005.05.048 (2005).
207        Ionic limiting molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory. Journal of Physical Chemistry B109, 23141-23144, doi:10.1021/jp055233x (2005).
208        Controlled crystallization and granulation of nano-scale beta-Ni(OH)(2) cathode materials for high power Ni-MH batteries. Journal of Power Sources152, 285-290, doi:10.1016/j.jpowsour.2005.03.208 (2005).
209        Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. Journal of Power Sources150, 216-222, doi:10.1016/j.jpowsour.2005.02.029 (2005).
210        Fluorine doping of spherical spinel LiMn2O4. Solid State Ionics176, 2571-2576, doi:10.1016/j.ssi.2005.07.012 (2005).
211        Electrochemical characteristics of sulfur composite cathode materials in rechargeable lithium batteries. Journal of Power Sources138, 271-273, doi:10.1016/j.jpowsour.2004.06.032 (2004).
 

 

首 页|实验室简介|动态新闻|承担项目|研究成果|产业化案例|仪器设备|团队成员|团队生活|招聘信息|学术活动|联系我们
CopyRight©2012 hexmgroup.com all right reserved 苏ICP备13009392号-1
联系电话:010-62773274 后台管理