王莉

浏览:7263  发布人:系统管理员  发布日期2012-10-23

王莉

王莉,女,理学博士,副研究员。19772月出生于河北唐山,1995.9~1999.7就读于清华大学化学系学习,师从曹立礼教授和朱永法教授,从事超硬材料制备及多层复合薄膜间界面化学反应的研究;1999.8-2004.7于清华大学化学系师从张新荣教授和朱永法教授,获理学博士学位,主要从事纳米材料的合成与催化研究;20048月至今工作于清华大学核能与新能源技术研究院,致力于能源存储与转化,着重解决化学电源中的界面化学、离子/电子传输和热化学问题,在新型电极材料、先进液相法材料制备工艺、以及固有安全性动力电池技术等研究中取得了多项国际先进水平的研究结果

发表学术论文300多篇,其中SCI收录200多篇,多篇发表在《Nature Communications》、《Advanced Materials》、《Advanced Energy Materials》、《ACS Energy Letters》、《Angew. Chem. Int. Ed.》、《nano lett.》、《Adv. Funct. Mater.》、《J. Mater. Chem.》、《J. Power Sources》等领域顶级刊物上;申报国内外专利5713项已获授权多次应邀在国内及国际会议上作大会报告2012年获得第16届国际锂离子电池大会IMLB2012的青年学者奖Young Investigator Award);主持和承担了20余项科研课题,作为负责人主持1项自然科学基金项目、1项科技部国际合作项目子课题和5项国际合作项目,作为副组长及技术负责人主持2973子课题、1项海装专项子课题、6项国际合作和多项清华大学校内自主科研项目

 

Tel:86-10-8979607386-13671146541;Fax: 86-10-89796031;E-mail: wang-l@tsinghua.edu.cn

常年招收博士后、联合培养博士生。

 

部分期刊论文

1、Reductive gas manipulation at early self-heating stage enables controllable battery thermal failure. Joule, doi:10.1016/j.joule.2022.10.010 (2022).
2、Nonflammable all-fluorinated electrolytes enabling high-power and long-life LiNi0.5Mn1.5O4/Li4Ti5O12 lithium-ion batteries. Nano Energy105, doi:10.1016/j.nanoen.2022.108040 (2023).
3、Tailoring Practically Accessible Composite Polymer/Inorganic Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. Nano-Micro Letters, doi:10.1007/s40820-022-00996-1 (2023).
4、Cobalt‐Free Cathode Materials: Families and their Prospects (Back Cover of Adv. Energy Mater. 16/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270067 (2022).
5、Cobalt‐Free Cathode Materials: Families and their Prospects. Advanced Energy Materials12, 202103894, doi:10.1002/aenm.202103894 (2022).
6、The significance of detecting imperceptible physical/chemical changes/reactions in lithium-ion batteries: a perspective. Energy & Environmental Science15, 2329 - 2355, doi:10.1039/d2ee01020h (2022).
7、Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat4, e12228, doi:10.1002/inf2.12228 (2022).
8、Digital Twin Enables Rational Design of Ultrahigh‐Power Lithium‐Ion Batteries. Advanced Energy Materials, doi:10.1002/aenm.202202660 (2022).
9、Single‐Crystalline Ni‐Rich LiNixMnyCo1-x−yO2 Cathode Materials: A Perspective (Back Cover of Adv. Energy Mater. 45/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270192 (2022).
10、Single‐Crystalline Ni‐Rich LiNixMnyCo1−x−yO2 Cathode Materials: A Perspective. Advanced Energy Materials12, doi:10.1002/aenm.202202022 (2022).
11、A Paradigm of Calendaring‐Driven Electrode Microstructure for Balanced Battery Energy Density and Power Density. Advanced Energy Materials, doi:10.1002/aenm.202202544 (2022).
12、In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long‐Cycle High‐Voltage Solid‐State Lithium Batteries (Back Cover of Adv. Energy Mater. 39/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270162 (2022).
13、In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long‐Cycle High‐Voltage Solid‐State Lithium Batteries. Advanced Energy Materials12, doi:10.1002/aenm.202201762 (2022).
14、Significance of Antisolvents on Solvation Structures Enhancing Interfacial Chemistry in Localized High-Concentration Electrolytes. ACS Central Science8, 1290-1298, doi:10.1021/acscentsci.2c00791 (2022).
15、Thermal Runaway of Nonflammable Localized High‐Concentration Electrolytes for Practical LiNi0.8Mn0.1Co0.1O2|Graphite‐SiO Pouch Cells. Advanced Science, e2204059, doi:10.1002/advs.202204059 (2022).
16、Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Materials49, 135-143, doi:10.1016/j.ensm.2022.04.009 (2022).
17、First AIE probe for lithium-metal anodes. Matter5, 3530-3540, doi:10.1016/j.matt.2022.07.018 (2022).
18、Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Materials46, 563-569, doi:10.1016/j.ensm.2022.01.044 (2022).
19、Single-Layer-Particle Electrode Design for Practical Fast-Charging Lithium-ion Batteries. Advanced Materials, e2202892, doi:10.1002/adma.202202892 (2022).
20、Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator (Inside Front Cover of Adv. Energy Mater. 44/2022). Advanced Energy Materials12, doi:10.1002/aenm.202270184 (2022).
21、Boosting Battery Safety by Mitigating Thermal‐Induced Crosstalk with a Bi‐Continuous Separator. Advanced Energy Materials, doi:10.1002/aenm.202201964 (2022).
22、Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Advanced Materials34, e2106335, doi:10.1002/adma.202106335 (2022).
23、Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications13, 172, doi:10.1038/s41467-021-27841-0 (2022).
24、Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews5, accepted, doi:10.1007/s41918-022-00158-2 (2022).
25、Thermal-Switchable, Trifunctional Ceramic-Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems. ACS Nano16, 10729-10741, doi:10.1021/acsnano.2c02557 (2022).
26、Revisiting the Initial Irreversible Capacity Loss of LiNi0.6Co0.2Mn0.2O2 Cathode Material Batteries. Energy Storage Materials50, 373-379, doi:10.1016/j.ensm.2022.05.038 (2022).
27、Ultrahigh rate capability of manganese based olivine cathodes enabled by interfacial electron transport enhancement. Nano Energy104, doi:10.1016/j.nanoen.2022.107895 (2022).
28、Targeted Masking Enables Stable Cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6 V. Nano Energy96, doi:10.1016/j.nanoen.2022.107123 (2022).
29、Atomic-Scale Insight into the Lattice Volume Plunge of LixCoO2 at Deep Delithiation. Energy Advances, doi:10.1039/d2ya00278g (2022).
30、Revealing the Intrinsic Uneven Electrochemical Reactions of Li Metal Anode in Ah‐Level Laminated Pouch Cells. Advanced Functional Materials, doi:10.1002/adfm.202210669 (2022).
31、Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries. Nano Energy104, doi:10.1016/j.nanoen.2022.107874 (2022).
32、Engineering an Insoluble Cathode Electrolyte Interphase Enabling High Performance NCM811//Graphite Pouch Cell at 60 °C. Advanced Energy Materials12, doi:10.1002/aenm.202201631 (2022).
33、Double-salt electrolyte for Li-ion batteries operated at elevated temperatures. Energy Storage Materials49, 493-501, doi:10.1016/j.ensm.2022.04.036 (2022).
34、Ultrafast Metal Electrodeposition Revealed by In Situ Optical Imaging and Theoretical Modeling towards Fast‐Charging Zn Battery Chemistry. Angewandte Chemie-International Edition134, doi:10.1002/ange.202116560 (2022).
35、Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials35, 353-377, doi:10.1016/j.ensm.2020.11.021 (2021).
36、Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).
37、Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters6, 3719-3724, doi:10.1021/acsenergylett.1c01713 (2021).
38、Promises and Challenges of the Practical Implementation of Prelithiation in Lithium‐Ion Batteries. Advanced Energy Materials, doi:10.1002/aenm.202101565 (2021).
39、High‐Voltage and High‐Safety Practical Lithium Batteries with Ethylene Carbonate‐Free Electrolyte. Advanced Energy Materials11, 2102299, doi:10.1002/aenm.202102299 (2021).
40、Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials37, 77-86, doi:10.1016/j.ensm.2021.02.001 (2021).
41、In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials43, 248-257, doi:10.1016/j.ensm.2021.09.007 (2021).
42、Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials34, 563-573, doi:10.1016/j.ensm.2020.10.020 (2021).
43、Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters6, 1839–1848, doi:10.1021/acsenergylett.1c00365 (2021).
44、In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications12, 4235, doi:10.1038/s41467-021-24404-1 (2021).
45、Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy85, doi:10.1016/j.nanoen.2021.105878 (2021).
46、Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials40, 329-336, doi:10.1016/j.ensm.2021.05.018 (2021).
47、Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials35, 310-316, doi:10.1016/j.ensm.2020.11.015 (2021).
48、Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials39, 395-402, doi:10.1016/j.ensm.2021.04.035 (2021).
49、A Salt‐in‐Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials31, doi:10.1002/adfm.202010602 (2021).
50、The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).
51、An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters5, 807-816, doi:10.1021/acsenergylett.0c00211 (2020).
52、Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials33, 188-215, doi:10.1016/j.ensm.2020.08.014 (2020).
53、 Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications11, 829, doi:10.1038/s41467-020-14550-3 (2020).
54、Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials10, doi:10.1002/aenm.201903568 (2020).
55、Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy71, doi:10.1016/j.nanoen.2020.104643 (2020).
56、Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications11, 5100, doi:10.1038/s41467-020-18868-w (2020).
57、A Lithium Metal Anode Surviving Battery Cycling Above 200 degrees C. Advanced Materials32, e2000952, doi:10.1002/adma.202000952 (2020).
58、Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule3, 1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).
59、Crystal Orientation Tuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials. Nano Letters12, 5632-5636, doi:10.1021/nl3027839 (2012).
60、Nano-Structured Phosphorus Composite as High-Capacity Anode Materials for Lithium Batteries. Angewandte Chemie-International Edition51, 9034-9037, doi:10.1002/anie.201204591 (2012).
 
 

首 页|实验室简介|动态新闻|承担项目|研究成果|产业化案例|仪器设备|团队成员|团队生活|招聘信息|学术活动|联系我们
CopyRight©2012 hexmgroup.com all right reserved 苏ICP备13009392号-1
联系电话:010-62773274 后台管理