课题组近期部分文章及主要期刊影响因子

浏览:4969  发布人:管理员  发布日期:2018-09-02

 2021年影响因子.xls

课题组成员近年部分文章 

1            Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications,  13, doi:10.1038/s41467-021-27841-0 (2022).

2            Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials,  35, 353-377, doi:10.1016/j.ensm.2020.11.021 (2021).

3            Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, doi:10.1002/inf2.12228 (2021).

4           Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials,  36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).

5            Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters,  6, 3719-3724, doi:10.1021/acsenergylett.1c01713 (2021).

6            Trends in study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy,  1, doi:10.1002/bte2.12005 (2021).

7            Promises and Challenges of the Practical Implementation of Prelithiation in Lithium‐Ion Batteries. Advanced Energy Materials, doi:10.1002/aenm.202101565 (2021).

8            Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, doi:10.1016/j.matt.2021.08.009 (2021).

9            New insight on graphite anode degradation induced by Li‐plating. Energy & Environmental Materials, doi:10.1002/eem2.12334 (2021).

10          Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chemical Engineering Journal,  420, doi:10.1016/j.cej.2021.129642 (2021).

11          High‐Voltage and High‐Safety Practical Lithium Batteries with Ethylene Carbonate‐Free Electrolyte. Advanced Energy Materials, doi:10.1002/aenm.202102299 (2021).

12          Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials,  37, 77-86, doi:10.1016/j.ensm.2021.02.001 (2021).

13          In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials,  43, 248-257, doi:10.1016/j.ensm.2021.09.007 (2021).

14          Nonflammable Pseudoconcentrated Electrolytes for Batteries. Current Opinion in Electrochemistry,  30, doi:10.1016/j.coelec.2021.100783 (2021).

15          Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Advanced Materials, e2106335, doi:10.1002/adma.202106335 (2021).

16          Impact of lithium‐ion coordination on lithium electrodeposition. Energy & Environmental Materials, doi:10.1002/eem2.12266 (2021).

17          Suppression of lithium dendrite by aramid nanofibrous aerogel separator. Journal of Power Sources,  515, doi:10.1016/j.jpowsour.2021.230608 (2021).

18          Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials,  34, 563-573, doi:10.1016/j.ensm.2020.10.020 (2021).

19          Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters,  6, 1839–1848, doi:10.1021/acsenergylett.1c00365 (2021).

20          In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications,  12, 4235, doi:10.1038/s41467-021-24404-1 (2021).

21          Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society,  143, 92-96, doi:10.1021/jacs.0c11313 (2021).

22          Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, doi:10.1021/acs.chemmater.1c03156 (2021).

23          Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy,  85, doi:10.1016/j.nanoen.2021.105878 (2021).

24          Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials,  40, 329-336, doi:10.1016/j.ensm.2021.05.018 (2021).

25          Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials,  35, 310-316, doi:10.1016/j.ensm.2020.11.015 (2021).

26          Thermal runaway of lithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy & Environmental Materials, doi:10.1002/eem2.12297 (2021).

27          Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials,  39, 395-402, doi:10.1016/j.ensm.2021.04.035 (2021).

28          Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. ACS Energy Letters, 131-139, doi:10.1021/acsenergylett.1c02122 (2021).

29          A Salt‐in‐Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials,  31, doi:10.1002/adfm.202010602 (2021).

30          In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Science China Chemistry,  64, 1417-1425, doi:10.1007/s11426-021-1023-4 (2021).

31          A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm(-2) and 20 mAh cm(-2). Journal of the American Chemical Society,  143, 3143-3152, doi:10.1021/jacs.0c11753 (2021).

32          The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials,  33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).

33          Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Science Advances,  6, doi:10.1126/sciadv.aay8606 (2020).

34          Functional epoxy vitrimers and composites. Progress in Materials Science, doi:10.1016/j.pmatsci.2020.100710 (2020).

35          Liquid-Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie-International Edition,  59, 4778-4784, doi:10.1002/anie.201915694 (2020).

36          An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters,  5, 807-816, doi:10.1021/acsenergylett.0c00211 (2020).

37          A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Research,  13, 1383-1388, doi:10.1007/s12274-020-2645-8 (2020).

38          Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials,  33, 188-215, doi:10.1016/j.ensm.2020.08.014 (2020).

39          Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications,  11, 829, doi:10.1038/s41467-020-14550-3 (2020).

40          Accelerated Lithium-ion Conduction in Covalent Organic Frameworks. Chemical Communications,  56, 10465 - 10468, doi:10.1039/D0CC04324A (2020).

41          Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials,  10, doi:10.1002/aenm.201903568 (2020).

42          Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research,  13, 1122-1126, doi:10.1007/s12274-020-2756-2 (2020).

43          Conformal Prelithiation Nanoshell on LiCoO2 Enabling High-Energy Lithium-Ion Batteries. Nano Letters,  20, 4558-4565, doi:10.1021/acs.nanolett.0c01413 (2020).

44          Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy,  71, doi:10.1016/j.nanoen.2020.104643 (2020).

45          Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. SCIENCE CHINA Materials,  63, 1683-1692, doi:10.1007/s40843-020-1327-8 (2020).

46          Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications,  11, 5100, doi:10.1038/s41467-020-18868-w (2020).

47          A Lithium Metal Anode Surviving Battery Cycling Above 200 degrees C. Advanced Materials,  32, e2000952, doi:10.1002/adma.202000952 (2020).

48          Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule,  4, 743-770, doi:10.1016/j.joule.2020.02.010 (2020).

49          Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nature Communications,  10, doi:10.1038/s41467-019-11144-6 (2019).

50          Reprocessable Thermoset Soft Actuators. Angewandte Chemie-International Edition,  58, 17474-17479, doi:10.1002/anie.201911612 (2019).

51          An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials,  29, doi:10.1002/adfm.201805978 (2019).

52          New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters,  4, 656-665, doi:10.1021/acsenergylett.9b00032 (2019).

53          Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule,  3, 1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).

54          Three-Dimensional Printing of Hierarchical Porous Architectures. Chemistry of Materials,  31, 10017-10022, doi:10.1021/acs.chemmater.9b02761 (2019).

55          Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nature Communications,  9, doi:10.1038/s41467-018-04257-x (2018).

56          Metal-Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistry of Materials,  30, 4124-4133, doi:10.1021/acs.chemmater.8b01573 (2018).

57          An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials,  29, doi:10.1002/adfm.201805978 (2018).

58          Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials,  30, doi:10.1002/adma.201801103 (2018).

59          Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule,  2, 2047-2064, doi:10.1016/j.joule.2018.06.015 (2018).

60          Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nature Communications,  9, doi:10.1038/s41467-018-06719-8 (2018).

61          Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials,  10, 246-267, doi:10.1016/j.ensm.2017.05.013 (2018).


打印收藏此页关闭
首 页|实验室简介|动态新闻|承担项目|研究成果|产业化案例|仪器设备|团队成员|团队生活|招聘信息|学术活动|联系我们
CopyRight©2012 hexmgroup.com all right reserved 苏ICP备13009392号-1
联系电话:010-62773274 后台管理