
2021年影响因子.xls
课题组成员近年部分文章
1 Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications, 13, doi:10.1038/s41467-021-27841-0 (2022).
2 Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials, 35, 353-377, doi:10.1016/j.ensm.2020.11.021 (2021).
3 Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, doi:10.1002/inf2.12228 (2021).
4 Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).
5 Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters, 6, 3719-3724, doi:10.1021/acsenergylett.1c01713 (2021).
6 Trends in study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy, 1, doi:10.1002/bte2.12005 (2021).
7 Promises and Challenges of the Practical Implementation of Prelithiation in Lithium‐Ion Batteries. Advanced Energy Materials, doi:10.1002/aenm.202101565 (2021).
8 Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, doi:10.1016/j.matt.2021.08.009 (2021).
9 New insight on graphite anode degradation induced by Li‐plating. Energy & Environmental Materials, doi:10.1002/eem2.12334 (2021).
10 Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chemical Engineering Journal, 420, doi:10.1016/j.cej.2021.129642 (2021).
11 High‐Voltage and High‐Safety Practical Lithium Batteries with Ethylene Carbonate‐Free Electrolyte. Advanced Energy Materials, doi:10.1002/aenm.202102299 (2021).
12 Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 37, 77-86, doi:10.1016/j.ensm.2021.02.001 (2021).
13 In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials, 43, 248-257, doi:10.1016/j.ensm.2021.09.007 (2021).
14 Nonflammable Pseudoconcentrated Electrolytes for Batteries. Current Opinion in Electrochemistry, 30, doi:10.1016/j.coelec.2021.100783 (2021).
15 Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Advanced Materials, e2106335, doi:10.1002/adma.202106335 (2021).
16 Impact of lithium‐ion coordination on lithium electrodeposition. Energy & Environmental Materials, doi:10.1002/eem2.12266 (2021).
17 Suppression of lithium dendrite by aramid nanofibrous aerogel separator. Journal of Power Sources, 515, doi:10.1016/j.jpowsour.2021.230608 (2021).
18 Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials, 34, 563-573, doi:10.1016/j.ensm.2020.10.020 (2021).
19 Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 6, 1839–1848, doi:10.1021/acsenergylett.1c00365 (2021).
20 In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications, 12, 4235, doi:10.1038/s41467-021-24404-1 (2021).
21 Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society, 143, 92-96, doi:10.1021/jacs.0c11313 (2021).
22 Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, doi:10.1021/acs.chemmater.1c03156 (2021).
23 Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 85, doi:10.1016/j.nanoen.2021.105878 (2021).
24 Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials, 40, 329-336, doi:10.1016/j.ensm.2021.05.018 (2021).
25 Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials, 35, 310-316, doi:10.1016/j.ensm.2020.11.015 (2021).
26 Thermal runaway of lithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy & Environmental Materials, doi:10.1002/eem2.12297 (2021).
27 Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 39, 395-402, doi:10.1016/j.ensm.2021.04.035 (2021).
28 Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. ACS Energy Letters, 131-139, doi:10.1021/acsenergylett.1c02122 (2021).
29 A Salt‐in‐Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials, 31, doi:10.1002/adfm.202010602 (2021).
30 In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Science China Chemistry, 64, 1417-1425, doi:10.1007/s11426-021-1023-4 (2021).
31 A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm(-2) and 20 mAh cm(-2). Journal of the American Chemical Society, 143, 3143-3152, doi:10.1021/jacs.0c11753 (2021).
32 The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials, 33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).
33 Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Science Advances, 6, doi:10.1126/sciadv.aay8606 (2020).
34 Functional epoxy vitrimers and composites. Progress in Materials Science, doi:10.1016/j.pmatsci.2020.100710 (2020).
35 Liquid-Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie-International Edition, 59, 4778-4784, doi:10.1002/anie.201915694 (2020).
36 An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 5, 807-816, doi:10.1021/acsenergylett.0c00211 (2020).
37 A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Research, 13, 1383-1388, doi:10.1007/s12274-020-2645-8 (2020).
38 Reviewing the Current Status and Development of Polymer Electrolytes for Solid-State Lithium Batteries. Energy Storage Materials, 33, 188-215, doi:10.1016/j.ensm.2020.08.014 (2020).
39 Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 11, 829, doi:10.1038/s41467-020-14550-3 (2020).
40 Accelerated Lithium-ion Conduction in Covalent Organic Frameworks. Chemical Communications, 56, 10465 - 10468, doi:10.1039/D0CC04324A (2020).
41 Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials, 10, doi:10.1002/aenm.201903568 (2020).
42 Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 13, 1122-1126, doi:10.1007/s12274-020-2756-2 (2020).
43 Conformal Prelithiation Nanoshell on LiCoO2 Enabling High-Energy Lithium-Ion Batteries. Nano Letters, 20, 4558-4565, doi:10.1021/acs.nanolett.0c01413 (2020).
44 Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy, 71, doi:10.1016/j.nanoen.2020.104643 (2020).
45 Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. SCIENCE CHINA Materials, 63, 1683-1692, doi:10.1007/s40843-020-1327-8 (2020).
46 Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 11, 5100, doi:10.1038/s41467-020-18868-w (2020).
47 A Lithium Metal Anode Surviving Battery Cycling Above 200 degrees C. Advanced Materials, 32, e2000952, doi:10.1002/adma.202000952 (2020).
48 Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule, 4, 743-770, doi:10.1016/j.joule.2020.02.010 (2020).
49 Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nature Communications, 10, doi:10.1038/s41467-019-11144-6 (2019).
50 Reprocessable Thermoset Soft Actuators. Angewandte Chemie-International Edition, 58, 17474-17479, doi:10.1002/anie.201911612 (2019).
51 An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 29, doi:10.1002/adfm.201805978 (2019).
52 New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters, 4, 656-665, doi:10.1021/acsenergylett.9b00032 (2019).
53 Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule, 3, 1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).
54 Three-Dimensional Printing of Hierarchical Porous Architectures. Chemistry of Materials, 31, 10017-10022, doi:10.1021/acs.chemmater.9b02761 (2019).
55 Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nature Communications, 9, doi:10.1038/s41467-018-04257-x (2018).
56 Metal-Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistry of Materials, 30, 4124-4133, doi:10.1021/acs.chemmater.8b01573 (2018).
57 An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 29, doi:10.1002/adfm.201805978 (2018).
58 Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 30, doi:10.1002/adma.201801103 (2018).
59 Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule, 2, 2047-2064, doi:10.1016/j.joule.2018.06.015 (2018).
60 Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nature Communications, 9, doi:10.1038/s41467-018-06719-8 (2018).
61 Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267, doi:10.1016/j.ensm.2017.05.013 (2018).